
Fully Abstracted State
Channels: an object
oriented approach

Reminder:
How state channels work

State channels move on-chain
operations (requiring many parties)
off-chain (requiring just a few)
while maintaining or improving the
guarantees of the blockchain

Question:

How can we apply the state channel
model to a wide variety of problems

without having to build individual
implementations for each application?

Some properties we would like our solution to have:
● The solution should serve, unmodified, for many different kinds of state channel

applications

● As far as possible, the design should remain trust free

● For the sake of privacy, cost, and responsive performance, we would like to
minimise on-chain storage and operations

● Channels should be composable so that any application for a single channel will
also work across several combined channels

● Operations should be parallelisable so that we can close out or rearrange some
operations without disrupting others

(continued)
● It should be possible to leave on-chain components unchanged for year-like

timescales

● Correspondingly, it should be possible to initiate new applications within an
existing state channel without requiring any on-chain operation

● Use of a state channel should not reduce the privacy of participants

● As far as possible, removal of whole or partial state deposits from a state channel
should be indistinguishable from normal transactions.

● The state tracked by the channel, and the potential obligations of its participants
should not needlessly balloon over time

Answer:

Counterfactual instantiation!
Or, “how to act as if what hasn’t happened is already true”

Disclaimer: if counterfactual instantiation were right for you, results would be
guaranteed. Not all contracts can be counterfactually instantiated. Do not use

counterfactual instantiation as a substitute for mechanism design. Please consult
with your resident cryptoeconomist to see if counterfactual instantiation is an

appropriate solution for your problem. Counterfactual instantiation does not solve
the halting problem or provide infinite computing power. Counterfactual
instantiation cannot answer a broken question. If learning more about
counterfactual instantiation results in obsessive behaviour...welcome!

Basic idea: use incentives to make both parties act
as if there was already a contract in the blockchain,
even though there isn’t

Give both parties the ability to put it in the blockchain
if they need to (via presigned tx’s that will create it)

But also give both parties the incentive not to put it
there unless they have to (via fees and penalties)

I’m a normal
multisig!

By coming up with a general strategy for
“counterfactual instantiation” of contracts, we allow
the parties to add and change whatever they want

A similar technique, “counterfactual addressing”,
allows any of these counterfactual contracts to refer
to or depend on each other, even across channels.

Result: a highly generalised and abstract solution!

......

Under the hood:
To keep all these different contracts in order, we use a hierarchical and versioned “tree” of
counterfactual subchannels.

Each contract requires certain states within all parent contracts in order to become finalised. To
delete or move a contract, we exchange pre-signed state update transactions which would call one
of its parents to make the old contract invalid if another party tried to publish it. This allows for
periodic cleanup of the whole state tree just by incrementing the root version number.

1

€$

Ũ

��

2

€$

Ũ€

��

To learn more, visit
github.com/ledgerlabs/state-channels/wiki

https://github.com/ledgerlabs/state-channels/wiki
https://github.com/ledgerlabs/state-channels/wiki

Questions?

To learn more, visit
github.com/ledgerlabs/state-channels/wiki

Jeff Coleman
Head of Technology

ledgerlabs.com
info@ledgerlabs.com

Thanks!

https://github.com/ledgerlabs/state-channels/wiki
https://github.com/ledgerlabs/state-channels/wiki
mailto:info@ledgerlabs.com
mailto:info@ledgerlabs.com

